IMPROVING THE ACCURACY OF SMALL OBJECT DETECTION ON YOLO BY INCREASING THE NUMBER OF INPUT GRIDS
Abstract
Keywords
Full Text:
PDFReferences
Alex, K., Ilya, S., & E Geoffrey, H. (2012). Imagenet classification with deep convolutional neural networks. NIPS Conference, 1097–1105.
F. Felzenszwalb, P., B. Girshick, R., McAllester, D., & Ramanan, D. (2009). Object Detection with Discriminatively Trained Part Based Models. Computer, 47(2), 1–19.
Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2013). Visual object detection with deformable part models. Communications of the ACM, 56(9), 97–105. https://doi.org/10.1145/2500468.2494532
Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, 1440–1448. https://doi.org/10.1109/ICCV.2015.169
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 580–587. https://doi.org/10.1109/CVPR.2014.81
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2016). Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 142–158. https://doi.org/10.1109/TPAMI.2015.2437384
He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 2980–2988. https://doi.org/10.1109/ICCV.2017.322
Herdianto, H., & Nasution, D. (2023). Implementasi Metode Cnn Untuk Klasifikasi Objek. METHOMIKA Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 7(1), 54–60. https://doi.org/10.46880/jmika.vol7no1.pp54-60
Navneet, D., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1–8. https://doi.org/10.1007/978-3-642-33530-3_8
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–788. https://doi.org/10.1109/CVPR.2016.91
Felzenszwalb, P., McAllester, D., Ramanan, D., An, W., … Zhang, L. (2008). A Discriminatively Trained, Multiscale, Deformable Part Model. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 330(6), 1299–1305.
Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, 1–9.
Viola, P., & Jones, M. (2004). Robust Real-Time Face Detection Intro to Face Detection. International Journal of Computer Vision, 57(2), 137–154.
Article Metrics
Abstract view : 73 timesPDF – 40 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 PROSIDING UNIVERSITAS DHARMAWANGSA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Prosiding Universitas Dharmawangsa Terindex pada:
PROSIDING SEMINAR NASIONAL DAN INTERNASIONAL PUBLISHED BY :
UPT. Penerbitan dan Publikasi Ilmiah
UNIVERSITAS DHARMAWANGSA
Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783 Fax. 061 6615190
Surat Elektronik : ppi@dharmawangsa.ac.id
Prosiding Seminar Nasional dan Internasional By Universitas Dharmawangsa is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at https://proceeding.dharmawangsa.ac.id/index.php/PSND/index