ANALYSIS OF CUSTOMER DATA IN SELECTING POTENTIAL CUSTOMERS USING DATA MINING WITH THE K-MEANS ALGORITHM
Abstract
Abstract: Â In an increasingly competitive business era, understanding customer characteristics and preferences has become essential. This research aims to analyze customer data to find potential customers using data mining techniques and the K-Means algorithm. The data used comes from the company's database which includes transaction history, demographics and customer interactions. The K-Means algorithm is applied to cluster customer data into several groups based on similar characteristics. The clustering results show that there are customer segments with different profit potential for the company. By identifying potential customer segments, companies can design more targeted marketing strategies, increase the efficiency of allocating resources, and ultimately increase ROI (Return on Investment). This study provides guidance for companies in optimizing their approach to reaching potential customers and achieving marketing success.
Keywords: Data Mining, K-Means Algorithm, Customers, Data Analysis, Potential Customers, Marketing Strategy
Full Text:
PDFReferences
Ahsina, N., Fatimah, F., & Rachmawati, F. (2022). Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Teknologi Infomasi Terapan, 8(3). https://doi.org/10.33197/jitter.vol8.iss3.2022.883
Andi Cuhwanto, Y. N., & R, D. A. (2021). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means. Petir, 15(1), 48–56. https://doi.org/10.33322/petir.v15i1.1358
Murpratiwi, S. I., Agung Indrawan, I. G., & Aranta, A. (2021). Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail. Jurnal Pendidikan Teknologi Dan Kejuruan, 18(2), 152. https://doi.org/10.23887/jptk-undiksha.v18i2.37426
Muzaqi, K. A., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Status Gizi Pada Lansia Menggunakan Learning Vector Quantization 3 (LVQ 3). Journal of Dinda : Data Science, Information Technology, and Data Analytics, 2(1), 28–36. https://doi.org/10.20895/dinda.v2i1.272
Putra, Randi Rian & nadya, andhika putri. (2022). Implementasi sistem informasi perpustakaan dalam meningkatkan pelayanan dan struktur perpustakaan pada smp swasta pab 9 1. Jaringan Sistem Informasi …, 6(1), 83–88. http://ojsamik.amikmitragama.ac.id/index.php/js/article/view/136
Putra, R. R., Putri, N. A., & Wadisman, C. (2022). Village Fund Allocation Information System for Community Empowerment in Klambir Lima Kebun Village. Journal of Applied …, 3(2), 98–104. https://journal.yrpipku.com/index.php/jaets/article/view/681%0Ahttps://journal.yrpipku.com/index.php/jaets/article/download/681/467
Rianto, M., Rusdiah, R., & Ichwan, H. (2022). Penerapan Data Mining Dengan Metode Naïve Bayes Dan Learning Vector Quantization Credit Rating Dalam Memprediksi Kelayakan Pemberian Kredit Oleh PT. BPR Lebak Sejahtera. Respati, 17(1), 69. https://doi.org/10.35842/jtir.v17i1.443
Rofianto, D., Arifin, O., & Widyawati, D. K. (2023). Perbandingan Metode Klasifikasi Learning Vector Quantization Dengan Diskriminan Fisher Pada Data Bunga Iris. 7(1), 44–49.
Romadhona, W., Indarmawan Nugroho, B., & Alim Murtopo, A. (2022). Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means. Jurnal Minfo Polgan, 11(2), 100–104. https://doi.org/10.33395/jmp.v11i2.11797
Suarna, N., & Wijaya, Y. A. (2023). ANALISA PENERAPAN METODE CLUSTERING K-MEANS UNTUK PENGELOMPOKAN DATA TRANSAKSI KONSUMEN ( Studi Kasus : Cv . Mitra Indexindo Pratama ). 7(2), 1322–1328.
Sumadikarta, I., & Abeiza, E. (2014). Penerapan Algoritma K-Means Pada Data Mining Untuk Memilih Produk Dan Pelanggan Potensial. Jurnal Satya Informatika, 1, 12–22. https://lppm.usni.ac.id/jurnal/Istiqomah-Sumadikarta-Evan-Abeiza.pdf
Article Metrics
Abstract view : 107 timesPDF – 53 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 PROSIDING UNIVERSITAS DHARMAWANGSA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Prosiding Universitas Dharmawangsa Terindex pada:
PROSIDING SEMINAR NASIONAL DAN INTERNASIONAL PUBLISHED BY :
UPT. Penerbitan dan Publikasi Ilmiah
UNIVERSITAS DHARMAWANGSA
Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783 Fax. 061 6615190
Surat Elektronik : ppi@dharmawangsa.ac.id
Prosiding Seminar Nasional dan Internasional By Universitas Dharmawangsa is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at https://proceeding.dharmawangsa.ac.id/index.php/PSND/index