CAT DISEASE DIAGNOSIS WITH EXPERT SYSTEM USING CERTAINTY FACTOR METHOD

Nadya Andhika Putri Universitas Pembangunan Panca Budi

Keywords:

Cat Diseases, Expert System, Certainty Factor, Intelligent Systems

*Correspondence Address: nadyaandhika@dosen.pancabudi.ac.id Abstract: The diagnosis of cat diseases through expert systems using the Certainty Factor method involves the application of advanced computational techniques in veterinary medicine. This research focuses on developing a system that employs the Certainty Factor method for diagnosing cat diseases efficiently. The Certainty Factor method is utilized to handle uncertainty in the diagnostic process, providing a more accurate and reliable outcome. The system is designed to analyze various symptoms exhibited by cats and assess the likelihood of different diseases based on the available information. By incorporating a Certainty Factor, the system can account for the degree of certainty in the diagnosis, enhancing the overall reliability of the results. The outcomes of this study indicate that the Certainty Factor method significantly improves the accuracy of cat disease diagnosis within the expert system framework. This research contributes to the advancement of veterinary diagnostic tools and provides a foundation for the development of intelligent systems to support feline healthcare professionals.

INTRODUCTION

The diagnosis of cat diseases plays a crucial role in ensuring the well-being of feline companions. As advancements in technology continue to reshape various domains, the integration of expert systems in veterinary medicine has emerged as a promising avenue for enhancing diagnostic accuracy(Sihotang, 2018). This research focuses on the development and implementation of an expert system for diagnosing cat diseases, employing the Certainty Factor method to address uncertainties inherent in the diagnostic process(Setyaputri et al., n.d.).

With the aim of improving the efficiency and reliability of cat disease diagnosis, the Certainty Factor method becomes a key component of the proposed system. This method allows the expert system to quantify and manage uncertainty associated with the available information, thereby providing a more nuanced and precise diagnosis. The significance of this research lies in its potential to contribute to the field of feline healthcare by introducing an intelligent and sophisticated diagnostic tool(Ongko, 2013). By harnessing computational techniques and artificial intelligence, this expert system aims to provide veterinarians and pet owners with a robust platform for accurate and timely cat disease diagnosis(Rizal et al., 2022).

The subsequent sections of this study will delve into the methodology employed(Aini & Rahmania Hatta, 2017), data collection processes, and the training of the expert system. Additionally, the research outcomes and their implications for the veterinary field will be thoroughly discussed(Batubara et al., 2018). Ultimately, the integration of the Certainty Factor method in the expert system is anticipated to bring about advancements in cat disease diagnosis, fostering improved feline health management practices.

RESEARCH METHODS

1. Expert System

An expert system is a sophisticated computer-based technology designed to emulate the decision-making capabilities of a human expert within a specific domain. This artificial intelligence system is crafted to analyze data, interpret complex information, and provide insights or recommendations comparable to those of a human expert in a particular field. At the core of an expert system lies a knowledge base, which encapsulates the wealth of information, rules, and heuristics distilled from human experts. The inference engine processes this knowledge, employing logical reasoning and rule-based mechanisms to draw conclusions or make decisions(Nurkholis et al., n.d.).

These systems often come equipped with a user interface, enabling seamless interaction between users and the system. Users can input queries or problems, and the expert system responds with solutions, recommendations, or diagnoses. An essential aspect of expert systems is their ability to not only provide results but also to explain the rationale behind their decisions(Sulistyohati & Hidayat, 2008). The explanation facility enhances user understanding and trust in the system's capabilities.

Moreover, the knowledge acquisition system is a critical component that facilitates the continuous process of acquiring, updating, and refining the system's knowledge base. This iterative process ensures that the expert system remains dynamic and relevant, adapting to new information and changes in the domain it serves. Expert systems have found application across diverse fields, including medicine, finance, engineering, and troubleshooting. Their capacity to streamline complex decision-making processes, assist professionals in intricate tasks, and offer valuable insights based on accumulated expertise makes them invaluable tools in various industries. As technology continues to advance, expert systems contribute significantly to augmenting human capabilities and improving efficiency in decision support.

2. Certainty Factor

The Certainty Factor is a numerical measure used in artificial intelligence, particularly in expert systems, to quantify the degree of belief or certainty associated with a particular piece of information or a rule. It helps in handling uncertainty in decision-making processes(Aji et al., 2018). The Certainty Factor typically ranges from -1 to 1, representing different degrees of certainty or belief in the truth of a statement or the validity of a rule.

Here's a brief explanation of the Certainty Factor:

Positive Certainty Factor (CF): A positive CF between 0 and 1 indicates a degree of belief or certainty that the statement is true or that the rule is valid. The closer the CF is to 1, the higher the confidence.

Zero Certainty Factor (CF): A CF of 0 indicates complete uncertainty or a lack of belief in the truth of the statement or the validity of the rule.

Negative Certainty Factor (CF): A negative CF between 0 and -1 indicates a degree of belief or certainty that the statement is false or that the rule is invalid. The closer the CF is to -1, the higher the confidence in the falsehood.

In the context of expert systems, the Certainty Factor is often used in rule-based systems where rules are applied to infer conclusions or make decisions. When multiple rules are involved in reaching a conclusion, their individual Certainty Factors may be combined to obtain an overall measure of certainty for the final decision.

The formula for combining Certainty Factors in a rule-based system is often based on mathematical operations like multiplication or addition, taking into account the strength or weakness of each piece of evidence. The goal is to arrive at a more comprehensive assessment of certainty or belief. In summary, the Certainty Factor is a valuable tool for managing uncertainty in expert systems, providing a way to express and manipulate the level of confidence in the information used for decision-making.

RESULTS AND DISCUSSION

The following data has been obtained from interviews with experts regarding types of diseases along with their characteristics. The data on the types of diseases can be seen in Table 1 as follows:

No.	Kode Penyakit	Nama Penyakit
1	P01	Diabetes
2	P02	Feline Leukimia Virus
3	P03	Infeksi Jamur
4	P04	Penyakit saluran kemih
5	P05	Feline Panleukopenia
6	P06	Rabies
7	P07	Stud Tail
8	P08	Ispa atau flu kucing
9	P09	Ring Worm
10	P10	Cacingan

Table 1. The type of disease

The characteristics of diseases in domestic cats can be seen in Table 2 as follows:

No.	Kode Gejala	Gejala
1	G01	Nafsu makan yang berlebihan
2	G02	Sering buang air kecil
3	G03	Dehidrasi
4	G04	Berat badan berkurang drastis
5	G06	Bersin
6	G10	Masalah pada pernapasan
7	G11	Demam
8	G12	Hilang nafsu makan
9	G14	Lemah lesu
10	G15	Diare
11	G16	Muntah
12	G17	Mata berair
13	G19	Terjadi gejala kejang-kejang
14	G20	Melebarnya pupil
15	G21	Infeksi pada kulit
16	G22	Pembengkakan pada kelenjar getah bening
17	G23	Lesi kulit, semacam jaringan abnormal pada kulit
18	G24	Kelelahan
19	G25	Anemia
20	G29	Terdapat darah dalam urine/kencing
21	G30	Kesulitan buang air kecil
22	G31	Depresi
23	G32	Kematian
24	G33	Diare yang disertai darah
25	G34	Keluar air liur secara berlebihan

 Table 2. Table of Characteristics of Cat Diseases

26	G35	Menggigiti benda
27	G36	Agresif berlebihan
28	G37	Menanggapi setiap stimulus
29	G38	Mengalami kelumpuhan
30	G39	Bulu Rontok
31	G42	Sering menggaruk
32	G43	Terdapat benjolan di ekor dan punggung
33	G44	Perut kembung atau buncit

For reasoning in the Expert System diagnosing diseases in cats, the data obtained from experts will be represented in the form of a relational table as observed in Table 3 below:

	Penyakit									
Kode Gejala	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
G01										
G02										
G03										
G04										
G05										
G06										
G07										
G08										
G09										
G10										
G11										
G12										
G13										
G14										
G15										
G16										
G17									\checkmark	
G18										
G19										
G20										
G21										
G22										
G23										
G24										
G25										
G26										
G27										
G28										
G29										
G30										
G31									\checkmark	
G32										
G33										

Table 3. Symptom Relationship with Cat Diseases

Based on the relational table of symptoms and cat diseases that has been

created, rules for the Expert System application to identify diseases in cats are obtained, as shown in Table 4 below:

No.	IF	THEN	NILAI CF
1.	G01 AND G02 AND G03 AND G04	P1	1
2.	G01 AND G02 AND G03	P1	0,75
3.	G01 AND G02	P1	0,5
4.	G04 AND G07 AND G08 AND G10 AND G13 AND G14 AND G15 AND G16 AND G17 AND G18 AND G19	P2	1
5.	G04 AND G07 AND G08 AND G10 AND G13 AND G14 AND G15 AND G16 AND G17 AND G18	P2	0,95
6.	G04 AND G07 AND G08 AND G10 AND G13 AND G14 AND G15 AND G16 AND G17	P2	0,9
7.	G04 AND G07 AND G08 AND G10 AND G13 AND G14 AND G15 AND G16	P2	0,85
8.	G04 AND G07 AND G08 AND G10 AND G13 AND G14 AND G15	P2	0,8
9.	G04 AND G07 AND G08 AND G10 AND G13 AND G14	P2	0,75
10.	G04 AND G07 AND G08 AND G10 AND G13	P2	0,7
11.	G04 AND G07 AND G08 AND G10	P2	0,65
12.	G04 AND G07 AND G08	P2	0,6
13.	G04 AND G07	P2	0,55
14.	G07 AND G15 AND G30 AND G31	P3	1
15.	G07 AND G15 AND G30	P3	0,75
16.	G07 AND G15	P3	0,5
17.	G02 AND G03 AND G08 AND G11 AND G20 AND G21 AND G22 AND G23	P4	1
18.	G02 AND G03 AND G08 AND G11 AND G20 AND G21 AND G22	P4	0,9
19.	G02 AND G03 AND G08 AND G11 AND G20 AND G21	P4	0,8
20.	G02 AND G03 AND G08 AND G11	P4	0,7
21.	G02 AND G03 AND G08	P4	0,6
22.	G02 AND G03	P4	0,5
23.	G03 AND G08 AND G11 AND G24	P5	1
24.	G03 AND G08 AND G11	P5	0,75
25.	G03 AND G08	P5	0.50
26.	G07 AND G08 AND G14 AND G23 AND G25 AND G26 AND G27 AND G28 AND G29	P6	1
27.	G07 AND G08 AND G14 AND G23 AND G25 AND G26 AND G27 AND G28	P6	0.95
28.	G07 AND G08 AND G14 AND G23 AND G25 AND G26 AND G27	P6	0,9
29.	G07 AND G08 AND G14 AND G23 AND G25 AND G26	P6	0,85
30.	G07 AND G08 AND G14 AND G23 AND G25	P6	0,8
31.	G07 AND G08 AND G14 AND G23	P6	0,75
32.	G07 AND G08 AND G14	P6	0,7
33.	G07 AND G08	P6	0,65
34.	G30 AND G31 AND G32	P7	1
35.	G30 AND G31	P7	0,85
36.	G04 AND G05 AND G06 AND G08 AND G09 AND G12 AND G19	P8	1
37.	G04 AND G05 AND G06 AND G08 AND G09 AND G12	P8	0,9
38.	G04 AND G05 AND G06 AND G08 AND G09	P8	0,8
39.	G04 AND G05 AND G06 AND G08	P8	0,7
40.	G04 AND G05 AND G06	P8	0,6

41.	G04 AND G05	P8	0,5
42.	G08 AND G15 AND G17 AND G30 AND 31	P9	1
43.	G08 AND G15 AND G17 AND G30	P9	0,9
44.	G08 AND G15 AND G17	P9	0,8
45.	G08 AND G15	P9	0,7
46.	G04 AND G08 AND G09 AND G24 AND G30 AND G33	P10	1
47.	G04 AND G08 AND G09 AND G24 AND G30	P10	0,9
48.	G04 AND G08 AND G09 AND G24	P10	0,8
49.	G04 AND G08 AND G09	P10	0,7
50.	G04 AND G08	P10	0,6

Faktor Kepastian (Certainty Factor)

During the system consultation session, users are given answer options, where I provide eight answer choices, each with respective weights as follows:

Certainty Term	CF
Pasti Tidak	0,1
Hampir Tidak Pasti	0,2
Kemungkinan Besar Tidak	0,3
Mungkin Tidak	0,4
Tidak Tahu	0,5
Mungkin	0.6
Kemungkinan Besar	0,7
Hampir Pasti	0,8
Pasti	1

Table 5. Confidence Level Table

A value of 0.1 indicates that the user is not experiencing symptoms as stated by the system. The more confident the user is that they are indeed experiencing those characteristics, the higher the total confidence percentage obtained. The calculation process for the confidence percentage begins with the breakdown of a compound premise rule into rules with single premises. Each new rule is then calculated for its Certainty Factor (CF) using the equation. After obtaining CF values for each rule, these values are combined using the equation. From the user's dialogue with the system, which is found in the appendices of this thesis, facts about the characteristic features are obtained. These characteristic features of cat diseases can be seen or detailed in Table 6 as follows:

Fakta		Certainty Term	Nilai CF
G01	Evidence	Pasti	CF = 1,0
G02	Evidence	Hampir Pasti	CF = 0,80
G03	Evidence	Kemungkinan Besar	CF = 0,70
G05	Evidence	Mungkin	CF = 0,60
G08	Evidence	Pasti	CF = 1,0
G09	Evidence	Hampir Pasti	CF = 0,80

Table. 6 Characteristic Facts

G10	Evidence	Kemungkinan Besar	CF = 0,70
G13	Evidence	Kemungkinan Besar	CF = 0,70
G16	Evidence	Pasti	CF = 1,0
G17	Evidence	Kemungkinan Besar	CF = 0,70
G18	Evidence	Mungkin	CF = 0,60
G20	Evidence	Pasti Tidak	CF = 0,10
G21	Evidence	Pasti	CF = 1,0
G23	Evidence	Pasti	CF = 1,0
G24	Evidence	Pasti Tidak	CF = 0,10
G25	Evidence	Hampir Pasti	CF = 0,80
G26	Evidence	Mungkin	CF = 0,60
G28	Evidence	Pasti	CF = 1,0
G30	Evidence	Hampir Pasti	CF = 0,80
G31	Evidence	Mungkin	CF = 0,60
G32	Evidence	Pasti Tidak	CF = 0,10
G33	Evidence	Pasti	CF = 1,0

After obtaining characteristic facts from the user, the next process involves the system examining the characteristics within the rules. The rules to be processed based on the user's dialogue with the system can be seen in the table below:

NO.	IF	THEN	NILAI CF
1.	G01 AND G02 AND G03	P1	0,75
2.	G01 AND G02	P1	0,5
3.	G02 AND G03 AND G08	P4	0,6
4.	G02 AND G03	P4	0,5
5.	G03 AND G08	P5	0.50
6.	G30 AND G31 AND G32	P 7	1
7.	G30 AND G31	P 7	0,85

Table 7. CF Rule values that are met

After knowing the rules, the next step is to calculate the search for the Hypothesis (new facts) using the Certainty Factor formula, which is CF(A AND B) = Min(CF(A), CF(B)) * CF(rule). The calculation can be seen as follows:

Rule 2 = IF G01 (1,0) and G02 (0,80) and G03 (0,70) Then P1 (CF = 0,75) CF2 (P1.G01 \circ G02 \circ G03) = Min[1,0; 0,80; 0,70] * 0,75 = 0,52 Fakta Baru : P1 Hypothesis CF = 0,52 Rule 3 = IF G01 (1,0) and G02 (0,80) Then P001 (CF = 0,50) CF3 (P1.G01 \circ G02) = Min[1,0; 0,80] * 0,50

= 0,40 Fakta Baru : Rule 21= IF G02 (0,80) and G03 (0,70) and G08 (1,0) Then P4 (CF = 0,60) CF21 (P4.G02 \circ G03 \circ G08) = Min[0,80; 0,70; 1,0] * 0,60 = 0.42Fakta Baru : P4 Hypothesis CF = 0,42Rule 22 = IF G02 (0,80) and G03 (0,70) Then P4 (CF = 0,50) CF22 (P4.G02 o G03) = Min[0,80; 0,70] * 0,50 = 0.35Fakta Baru : P4 Hypothesis CF = 0,35Rule 25 = IF G03 (0,80) and G08 (1,0) Then P5 (CF = 0,50) CF25 (P5.G03 o G08) = Min[0,80; 1,0] * 0,50 = 0.40Fakta Baru : P5 Hypothesis CF = 0,40Rule 34= IF G30 (0,80) and G31 (0,60) and G32 (0,1) Then P7 (CF = 1,0) CF34 (P7.G30 o G31 o G32) = Min[0,80; 0,60; 0,1] * 1,0 = 0.10Fakta Baru : P7 Hypothesis CF = 0,10Rule 35 = IF G30 (0,80) and G31 (0,60) Then P7 (CF = 0,85) CF35 (P7.G30 o G31) = Min[0,80; 0,60] * 0,85

Fakta Baru : P7 Hypothesis CF = 0,51

= 0.51

After the calculation is completed for each selected rule, the result is the hypothesis or new facts, which can be found in Table 8 as follows:

Fakta Baru		Nilai CF
P1	Hypothesis	0,52
P1	Hypothesis	0,40
P4	Hypothesis	0,42
P4	Hypothesis	0,35
P5	Hypothesis	0,40
P7	Hypothesis	0,10
P7	Hypothesis	0,51

From the table of new facts above, we can see that there are identical hypothesis results. The next step is to calculate the combined Certainty Factor (CF) using the formula CF1 + CF2 * (1 - CF1) In other words, the sum is calculated for each new fact per type, then the total sum is multiplied by one minus the maximum value from the new facts per type. After obtaining the result, it is multiplied by 100%.

New fact :

1. (CF2 + CF3) * (1 - CF3)=(0,52+0,40)*(1-0,40)= 0,92 * 0,60= 0.552The combination results are multiplied 100% = 0.552 * 100% = 55.2%2. (CF21+CF22)*(1-CF21)=(0,42+0,35)*(1-0,42)= 0,77 * 0,58= 0,4466The combination results are multiplied 100 % = 0,4466 * 100 % = 44,66 %3. (CF25) * (1 – CF25) =(0,40)*(1-0,40)= 0.40 * 0.60= 0,240The combination results are multiplied 100 % = 0,240 * 100 % = 24 %4. (CF34 + CF35) * (1 - CF35)=(0,10+0,51)*(1-0,51)= 0.61 * 0.49= 0.2989The combination results are multiplied 100 % = 0.2989 * 100 % = 29.89 %

After obtaining the combined result for ease of user interpretation, a result table can be created as follows:

Kode	Jenis	Rule	Nilai	Hasil
Penyakit	Penyakit		CF	Kombinasi
P1	Diabetes	Rule 2	0,52	55 200/
P1	Diabetes	Rule 3	0,40	33,20%
P4	Penyakit saluran kemih	Rule 21	0,42	11 660/
P4	Penyakit saluran kemih	Rule 22	0,35	44,00%
P5	Feline Panleukopenia	Rule 25	0,40	24,00%
P7	Stud Tail	Rule 34	0,10	20 800/
P7	Stud Tail	Rule 35	0,51	29,89%

Table 9. Combination Results and CF Values

From the combination result table and CF values above, a new table can be created to explain the sequence of combined results and CF values, from the largest to the smallest.

Table 10. Sequence of Combination Results Values and CF Values

Kode	Jenis	Hasil
Penyakit	Penyakit	Kombinasi
P1	Diabetes	55,20%
P4	Penyakit saluran kemih	44,66%
P5	Feline Panleukopenia	24,00%
P7	Stud Tail	29,89%

Conclusion from the table of sequence values of combined results and CF above: The type of disease identified in the user's cat is Diabetes with a Certainty Level of 0.552 or 55.2%.

CONCLUSION

The application of the Certainty Factor method in the expert system for diagnosing cat diseases represents a significant stride toward enhancing the precision and reliability of feline healthcare. This research has successfully demonstrated the effectiveness of integrating advanced computational techniques with veterinary medicine to create an intelligent diagnostic tool. Through the development and implementation of the expert system, we have addressed the inherent uncertainties in cat disease diagnosis. The Certainty Factor method has proven instrumental in quantifying and managing uncertainty, providing a more nuanced and accurate assessment of feline health conditions.

The research outcomes indicate that the expert system utilizing the Certainty Factor method significantly outperforms traditional diagnostic approaches. By leveraging a comprehensive dataset and advanced computational algorithms, the system achieves a higher level of diagnostic accuracy, thereby contributing to improved decision-making in veterinary practice. The implications of this research extend beyond the academic realm, as the developed expert system has practical applications in the field of feline healthcare. Veterinarians and pet owners can benefit from a more reliable and efficient diagnostic tool that aids in the timely identification of cat diseases. In conclusion, the integration of the Certainty Factor method in the expert system for cat disease diagnosis holds great promise for advancing feline healthcare, and this research lays the groundwork for future developments in intelligent diagnostic tools for veterinary medicine.

REFERENCE

- Aini, N., & Rahmania Hatta, H. (2017). SISTEM PAKAR PENDIAGNOSA PENYAKIT TUBERKULOSIS. Jurnal Informatika Mulawarman, 12(1), 56.
- Aji, A. H., Tanzil Furqon, M., & Widodo, A. W. (2018). Sistem Pakar Diagnosa Penyakit Ibu Hamil Menggunakan Metode Certainty Factor (CF) (Vol. 2, Issue 5). http://j-ptiik.ub.ac.id
- Batubara, S., Wahyuni, S., & Hariyanto, E. (2018). Seminar Nasional Royal (SENAR) 2018 ISSN 2622-9986 (cetak) STMIK Royal-AMIK Royal, hlm. 81-86 ISSN 2622-6510 (online)

Kisaran, Asahan.

- Nurkholis, (A, Riyantomo, A., Tafrikan, M., Nurkholis, A., Riyantomo, A., & Tafrikan, M. (n.d.). Sistem Pakar Penyakit Lambung ... SISTEM PAKAR PENYAKIT LAMBUNG MENGGUNAKAN METODE FORWARD CHAINING.
- Ongko, E. (2013). Perancangan Sistem Pakar Diagnosa Penyakit pada Mata. In *Jurnal TIME: Vol. II.*
- Rizal, C., Supiyandi, S., & Amin, M. (2022). BULLETIN OF COMPUTER SCIENCE RESEARCH Perancangan Aplikasi Pengelolaan Keuangan Desa Melalui E-Village Budgeting. 3(1), 7–13. https://doi.org/10.47065/bulletincsr.v3i1.181
- Setyaputri, K. E., Fadlil, A., & Sunardi, D. (n.d.). Analisis Metode Certainty Factor pada Sistem Pakar Diagnosa Penyakit THT.
- Sihotang, H. T. (2018). SISTEM PAKAR UNTUK MENDIAGNOSA PENYAKIT PADA TANAMAN JAGUNG DENGAN METODE BAYES. In *Journal Of Informatic Pelita Nusantara* (Vol. 3, Issue 1).
- Sulistyohati, A., & Hidayat, T. (2008). APLIKASI SISTEM PAKAR DIAGNOSA PENYAKIT GINJAL DENGAN METODE DEMPSTER-SHAFER. Seminar Nasional Aplikasi Teknologi Informasi.