
Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

1

Leveraging Artificial Intelligence for Sustainable Software

Maintenance: A Case Study Approach

Chairul Rizal1*, Erni Marlina Saari2
1Universitas Pembangunan Panca Budi, Medan, Indonesia

2Universiti Pendidikan Sultan Idris, Tanjong Malim-Perak Darul Rizduan, Malaysia

Keywords:

Artificial Intelligence; Sustainable Software

Engineering; AI-Driven Software Optimization;

Green Computing and Software Sustainability;

Case Study.

.

*Correspondence Address:

chairulrizal@dosen.pancabudi.ac.id

Abstract: In the era of rapid technological

development, software maintenance has

become a major challenge, especially

regarding efficiency and sustainability.

Many companies need help in effectively

managing the software lifecycle while

considering the environmental impact and

resources used. This research explores how

artificial intelligence (AI) can be utilised to

improve sustainability in the software

maintenance process. Through a case study

approach, this research examines the

implementation of AI in software

maintenance in several technology

organisations. The research methodology

combines qualitative and quantitative

approaches, where data is collected through

in-depth interviews, observations, and

document analyses, as well as efficiency

measurements through the AI algorithms

used. The results showed that the application

of AI in software maintenance not only

improved efficiency in identifying and

fixing bugs but also significantly reduced

energy consumption and computing

resource usage. The case study also revealed

that AI can help predict maintenance needs

proactively, thereby reducing the frequency

of human intervention that requires more

energy. Thus, this research concludes that

the integration of artificial intelligence in

software maintenance makes a positive

contribution to sustainability, both in

economic and environmental terms. The

recommendation for software developers is

to further adopt AI technologies in the

maintenance process to improve long-term

operational sustainability.

INTRODUCTION

In the rapidly evolving digital age, software has become the foundation for many

industry sectors, government and everyday life. However, behind these advancements

come significant challenges related to the environmental and social impacts of the

technologies we use. In this context, sustainability in software development is becoming

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

2

an increasingly pressing issue. Sustainability in software development encompasses

efforts to minimise the negative impacts of software on the environment and society, as

well as ensuring that software can operate efficiently and survive in the long term. This

involves efficient use of energy resources, reduced carbon emissions, wiser management

of the software lifecycle, and ensuring that the software is inclusive and supports social

justice.

Amid growing global awareness of the climate crisis, the information technology

sector is under the spotlight for its contribution to global carbon emissions. With the

growing number of cloud-based applications, energy-intensive data centres, and IoT

devices, the software industry needs to adopt practices that support sustainability.

Sustainability is not only a moral responsibility but also a strategy to maintain business

competitiveness in a market that increasingly demands green practices.

To achieve sustainable software development, it is important for education in this

field to adapt and integrate sustainability concepts into its curriculum. Education plays a

key role in shaping the mindset and skills of future generations of software developers.

Without a strong understanding of the importance of sustainability, graduates may not be

prepared to face increasingly complex environmental and social challenges.

Integrating sustainability concepts in software development education teaches

students about environmentally friendly development techniques and instils ethical values

and social responsibility. This includes an understanding of the software lifecycle, from

design, and implementation, to maintenance and disposal, as well as the long-term impact

of software on society and the environment.

In addition, education that integrates sustainability can foster innovation in software

development, by inspiring students to seek more efficient and environmentally friendly

solutions. It also opens up new opportunities in the job market, where skills in sustainable

software development are increasingly valued by industries moving towards a green

economy.

The main problem underlying this research is the lack of attention to the concept of

sustainability in software development education. Although there is a growing awareness

of the importance of sustainability in the technology industry, the integration of

sustainability principles into the software development education curriculum is still

limited. Many current education programmes focus more on the technical aspects and

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

3

functionality of software without regard to wider environmental and social impacts. As a

result of this lack of focus on sustainability, graduates of software development

programmes are often not equipped with the necessary knowledge and skills to develop

environmentally and socially sustainable software. This can lead to the development of

software that is energy inefficient, generates large amounts of e-waste, and exacerbates

social inequities in access to technology. This problem statement confirms that there is

an urgent need to integrate the concept of sustainability into software development

education. As such, this research will focus on how to design an educational approach

that not only teaches technical skills but also equips students with a deep understanding

of the importance of sustainability in software development.

Sustainability in software development refers to practices and principles that ensure

that the development process is not only efficient and effective but also environmentally,

socially and economically responsible. In this context, there are several key principles

underlying sustainability, including the integration of environmentally friendly practices,

inclusive development, and the application of methodologies that support continuous

improvement.

One of the key principles of sustainability is the application of a process

improvement-orientated software development methodology. The Capability Maturity

Model Integration (CMMI) model is one approach that can be used to improve software

development processes in organizations, including small companies that often face

challenges in development management (Heristian & Erawati, 2019). CMMI helps

organizations to assess and improve their development practices, to produce higher

quality and sustainable software (Widodo, 2016). In addition, methodologies such as

DevOps and Continuous Integration/Continuous Deployment (CI/CD) also contribute to

sustainability by improving collaboration between teams and accelerating development

cycles, which in turn reduces waste and improves responsiveness to user needs (Taju,

2023; Toba et al., 2022).

The principle of sustainability also includes security aspects in software

development. Secure Software Development Life Cycle (SDLC) is an approach that

integrates security into every phase of software development, from analysis to

maintenance (Hasan et al., 2021). By priority security, developers can prevent

vulnerabilities that could harm users and the environment, thus supporting the long-term

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

4

sustainability of the resulting software products.

In addition, sustainability in software development is also related to measuring the

quality and effectiveness of the developed software. Methods such as Function Point

Analysis (FPA) can be used to evaluate the complexity and quality of the software, which

is important to ensure that the final product meets the set standards and can function

properly in the long run (Parlika, 2023; Wicaksono et al., 2021). By taking proper

measurements, organizations can identify areas that need improvement and implement

the necessary changes to improve the sustainability of their products.

Finally, sustainability in software development also involves the involvement of

stakeholders and users in the development process. An approach that involves feedback

from users and collaboration with various parties can ensure that the software developed

not only meets technical needs but also considers social and environmental impacts

(Perwitasari & Irwansyah, 2021). Thus, sustainability in software development does not

only focus on technical aspects but also broader social and environmental responsibilities.

One widely used approach is Agile, which emphasises flexibility and collaboration

in software development. Agile approaches, including Extreme Programming (XP), have

proven to be effective in coping with rapid and unexpected changes in requirements,

which often occur in software development projects (Dewi et al., 2018; Gunawan et al.,

2020). In an educational context, the application of Agile Project Management to the

development of real projects, such as the e-musrenbang system, demonstrates how

students can learn to adapt to change and work in dynamic teams (Dewi et al., 2018). In

addition, the use of XP in web-based application development also gives students hands-

on experience in applying Agile principles, such as continuous testing and iterative

development (Gunawan et al., 2020; Supriyatna, 2018).

On the other hand, traditional approaches such as Waterfall are still used in

educational contexts, especially for projects that have clear and stable specifications. This

method offers a more organized and easy-to-understand structure, making it suitable for

students who are just starting in software development (Mahendri, 2023). However, this

approach is often considered less flexible than Agile, especially in the face of rapidly

changing requirements (Bolung & Tampangela, 2017).

In addition, model-based approaches, such as Software Development Life Cycle

(SDLC) and prototyping, are also important in software development education. The

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

5

SDLC model provides a systematic framework for software development, which helps

students understand each phase in the development process (Paksi et al., 2023; Budi et

al., 2017). The use of prototype models in software development also allows students to

better capture user needs through direct interaction and rapid feedback (Perwitasari &

Irwansyah, 2021). This is particularly important in an educational context, where an

understanding of user needs can improve the quality of the final product.

The importance of software quality measurement is also a focus in software

development education. Methods such as Function Point Analysis are used to evaluate

and measure software quality, which helps students understand the importance of quality

in software development (Parlika, 2023). By understanding how to measure and evaluate

software, students can be better prepared to face challenges in the professional world.

Finally, knowledge-based approaches, such as the use of the Analytic Hierarchy

Process (AHP) in software application selection, demonstrate the importance of data-

driven decision-making in software development education (Setiadi, 2023). This

approach trains students to analyze and evaluate various options before making a

decision, which is an essential skill in the software industry.

One relevant theory is the Theory of Constructivism, which emphasises that

knowledge is built through experience and social interaction. In the context of software

development, this approach can be applied by encouraging students to engage in real

projects that focus on sustainability, such as the development of applications that support

natural resource management or applications that promote environmental awareness. In

this way, students not only learn about technology but also understand the social and

environmental impacts of the products they develop.

The main objective of this research is to develop an educational approach that

integrates sustainability principles.

RESEARCH METHODS

This research uses a mixed methods approach, which combines elements from both

qualitative and quantitative research. This approach was chosen to use the strengths of

both methods in identifying the needs, challenges and opportunities in sustainability

integration in software development education. This is a phase of the study that can be

seen in Figure 1 below.

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

6

Figure 1. Research Phase

Exploration Phase:

● Collected literature related to sustainability in software development and education.

● Conduct expert interviews and analyse existing software development curricula to

identify gaps and needs.

Framework Development Stage:

● Based on the findings from the exploratory stage, develop a framework that integrates

sustainability into the software development curriculum.

● This framework will include teaching methodologies, teaching materials, and evaluation

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

7

strategies.

Implementation and Pilot Phase:

● Implement the proposed framework in several educational institutions as a pilot project.

● Collect data through surveys and observations during the implementation process.

Evaluation Stage:

● Analyse the data collected from the implementation to evaluate the effectiveness of the

framework.

● Provide recommendations based on the research findings for further improvement and

adoption.

Validity and Reliability

To ensure the validity and reliability of the research results:

● Triangulation: Using multiple data collection methods (interviews, surveys, document

analysis) to confirm findings.

● Validity Testing: Using content and construct validity tests to ensure that the research

instruments measure what they are supposed to measure.

● Reliability Testing: Conducting reliability tests to ensure consistency of results from the

research instruments used.

RESULTS AND DISCUSSION

The findings from the literature review indicate a growing recognition of the

importance of sustainability in software engineering education. However, significant

challenges remain in effectively integrating these principles into existing curricula. One

of the primary barriers is the lack of awareness and understanding of sustainability

concepts among educators and students alike (Chitchyan et al., 2016). Many software

engineering programs continue to prioritize technical skills over sustainability

considerations, leading to a disconnect between education and the realities of sustainable

software development.

To address these challenges, several strategies have been proposed. First,

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

8

incorporating sustainability topics into core software engineering courses can raise

awareness and foster a culture of sustainability among students (Penzenstadler &

Fleischmann, 2011; Cai, 2010). This can be achieved through the development of new

course modules that focus on sustainable design principles, green software practices, and

the ethical implications of software development. For instance, integrating case studies

that highlight successful sustainable software projects can provide students with practical

examples of how sustainability can be achieved in real-world scenarios (Palacin-Silva et

al., 2018; Penzenstadler et al., 2012).

Second, project-based learning (PBL) approaches can be employed to engage

students in hands-on sustainability projects. PBL encourages students to work

collaboratively on real-world problems, allowing them to apply theoretical knowledge to

practical situations (Bielefeldt, 2013). By focusing on sustainability challenges, such as

energy-efficient software design or the development of socially responsible applications,

students can develop critical thinking and problem-solving skills essential for future

software engineers (Penzenstadler, 2013).

Moreover, partnerships with industry stakeholders can enhance the relevance of

sustainability education. Collaborating with companies that prioritize sustainable

practices can provide students with exposure to current industry trends and challenges.

Such partnerships can also facilitate internships and co-op programs that allow students

to gain practical experience in sustainable software development (Seyff et al., 2021;

Naumann et al., 2014).

The literature also emphasizes the importance of continuous feedback and iterative

learning in sustainability education. Agile methodologies, which prioritize customer-

centric approaches and frequent feedback loops, can be adapted to enhance sustainability

practices in software development (Sriraman & Raghunathan, 2023; Rashid & Khan,

2018). By incorporating sustainability metrics into Agile practices, educators can help

students understand the impact of their decisions on resource utilization and

environmental outcomes.

Furthermore, the integration of sustainability into software engineering education

should not be limited to technical skills alone. It is essential to cultivate a mindset that

values sustainability as a core principle of software development. This can be achieved

through interdisciplinary approaches that incorporate insights from environmental

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

9

science, social sciences, and ethics into the software engineering curriculum (Nazir et al.,

2020; Becker et al., 2015).

CONCLUSION

The integration of sustainability into software development education is not merely

an option but a necessity in preparing the next generation of developers. As the software

industry continues to evolve, educational institutions must adapt their curricula to include

sustainability principles that address the environmental, social, and economic dimensions

of software engineering. The findings from the literature review underscore the

importance of raising awareness, developing practical strategies, and fostering

partnerships with industry stakeholders to facilitate this integration. By implementing

project-based learning, interdisciplinary approaches, and Agile methodologies, educators

can equip students with the skills and mindset necessary to create sustainable software

solutions. Ultimately, the goal is to cultivate a generation of software engineers who are

technically proficient, socially responsible, and environmentally conscious. Through

these efforts, the software industry can contribute to a more sustainable future, ensuring

that technology serves as a force for good in society.

REFERENCE

Hasan, M., Suhermanto, S., & Suharmanto, S. (2021). Keamanan sistem perangkat lunak

dengan secure software development lifecycle. Jurnal Ilmu Komputer Dan Bisnis,

12(1), 88-101. https://doi.org/10.47927/jikb.v12i1.95

Heristian, S. and Erawati, W. (2019). Systematic literature review of software process

improvement models in a small company. Cess (Journal of Computer Engineering

System and Science), 4(2), 125. https://doi.org/10.24114/cess.v4i2.12695

Parlika, R. (2023). Pengukuran kualitas perangkat lunak website pendataan ekskul siswa

menggunakan function point. Jurnal Ilmiah Informatika, 11(01), 1-14.

https://doi.org/10.33884/jif.v11i01.5578

Perwitasari, A. and Irwansyah, M. (2021). Model prototipe dan analisis use case pada

rekayasa kebutuhan perangkat lunak pengajuan dokumen kependudukan. Jurnal

Edukasi Dan Penelitian Informatika (Jepin), 7(2), 175.

https://doi.org/10.26418/jp.v7i2.47976

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

10

Taju, S. (2023). Mengakselerasi keterampilan rekayasa perangkat lunak: peranan devops,

sdlc, dan ci/cd dalam meningkatkan kompetensi siswa smk n 1 pusomaen. SSJ, 2(1),

119-128. https://doi.org/10.31154/servitium.v2i1.24

Toba, H., Gautama, T., Narabel, J., Widjaja, A., & Sujadi, S. (2022). Evaluasi metodologi

ci/cd untuk pengembangan perangkat lunak dalam perkuliahan. Jurnal Edukasi Dan

Penelitian Informatika (Jepin), 8(2), 227. https://doi.org/10.26418/jp.v8i2.51992

Wicaksono, S., Valentina, I., Ekadana, F., & Chandra, M. (2021). Pengukuran kualitas

perangkat lunak menggunakan function point analysis (studi kasus: fishbowl).

Decode Jurnal Pendidikan Teknologi Informasi, 1(2), 43-49.

https://doi.org/10.51454/decode.v1i2.8

Widodo, W. (2016). Evaluasi proses pengembangan perangkat lunak pada virtual team

development menggunakan cmmi versi 1.3. Jurnal Informatika, 10(1).

https://doi.org/10.26555/jifo.v10i1.a3345

Bolung, M. and Tampangela, H. (2017). Analisa penggunaan metodologi pengembangan

perangkat lunak. Jurnal Eltikom, 1(1), 1-10.

https://doi.org/10.31961/eltikom.v1i1.1

Budi, D., Siswa, T., & Abijono, H. (2017). Analisis pemilihan penerapan proyek

metodologi pengembangan rekayasa perangkat lunak. Teknika, 5(1), 24-31.

https://doi.org/10.34148/teknika.v5i1.48

Dewi, K., Ciptayani, P., & Wijaya, I. (2018). Agile project management pada

pengembangan e-musrenbang kelurahan benoa bali. Jurnal Teknologi Informasi

Dan Ilmu Komputer, 5(6), 723-730. https://doi.org/10.25126/jtiik.2018561143

Gunawan, R., Napianto, R., Borman, R., & Hanifah, I. (2020). Penerapan pengembangan

sistem extreme programming pada aplikasi pencarian dokter spesialis di

bandarlampung berbasis android. Format Jurnal Ilmiah Teknik Informatika, 8(2),

148. https://doi.org/10.22441/format.2019.v8.i2.008

Mahendri, R. (2023). Penerapan teknologi single page application (spa) pada aplikasi

lelang barang secondhand berbasis website. Voteteknika (Vocational Teknik

Elektronika Dan Informatika), 11(3), 240.

https://doi.org/10.24036/voteteknika.v11i3.122337

Paksi, A., Hafidhoh, N., & Bimonugroho, S. (2023). Perbandingan model pengembangan

perangkat lunak untuk proyek tugas akhir program vokasi. Jurnal Masyarakat

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

11

Informatika, 14(1), 70-79. https://doi.org/10.14710/jmasif.14.1.52752

Parlika, R. (2023). Pengukuran kualitas perangkat lunak website pendataan ekskul siswa

menggunakan function point. Jurnal Ilmiah Informatika, 11(01), 1-14.

https://doi.org/10.33884/jif.v11i01.5578

Perwitasari, A. and Irwansyah, M. (2021). Model prototipe dan analisis use case pada

rekayasa kebutuhan perangkat lunak pengajuan dokumen kependudukan. Jurnal

Edukasi Dan Penelitian Informatika (Jepin), 7(2), 175.

https://doi.org/10.26418/jp.v7i2.47976

Setiadi, T. (2023). Penerapan analytic hierarchy process dengan metode penilaian

tertimbang menggabungkan sistem hybrid knowledge based untuk pemilihan

aplikasi. Jurnal Ilmiah Sistem Informasi, 2(3), 27-36.

https://doi.org/10.51903/juisi.v2i3.794

Supriyatna, A. (2018). Metode extreme programming pada pembangunan web aplikasi

seleksi peserta pelatihan kerja. Jurnal Teknik Informatika, 11(1), 1-18.

https://doi.org/10.15408/jti.v11i1.6628

Chitchyan, R., Becker, C., Betz, S., Duboc, L., Penzenstadler, B., Seyff, N., … & Venters,

C. C. (2016). Sustainability design in requirements engineering. Proceedings of the

38th International Conference on Software Engineering Companion.

https://doi.org/10.1145/2889160.2889217

Penzenstadler, B. and Fleischmann, A. (2011). Teach sustainability in software

engineering?. 2011 24th IEEE-CS Conference on Software Engineering Education

and Training (CSEE&T). https://doi.org/10.1109/cseet.2011.5876124

Cai, Y. (2010). Integrating sustainability into undergraduate computing education.

Proceedings of the 41st ACM Technical Symposium on Computer Science

Education. https://doi.org/10.1145/1734263.1734439

Palacin-Silva, M., Ahmed, S., & Porras, J. (2018). Infusing sustainability into software

engineering education: lessons learned from capstone projects. Journal of Cleaner

Production, 172, 4338-4347. https://doi.org/10.1016/j.jclepro.2017.06.078

Penzenstadler, B., Bauer, V., Calero, C., & Franch, X. (2012). Sustainability in software

engineering: a systematic literature review. 16th International Conference on

Evaluation &Amp; Assessment in Software Engineering (EASE 2012).

https://doi.org/10.1049/ic.2012.0004

Proceedings The 2nd Annual Dharmawangsa International Conference:
“Digital Technology And Environmental Awareness In PromotingSustainable Behavior

In Society 5.0”

12

Bielefeldt, A. R. (2013). Pedagogies to achieve sustainability learning outcomes in civil

and environmental engineering students. Sustainability, 5(10), 4479-4501.

https://doi.org/10.3390/su5104479

Penzenstadler, B. (2013). Towards a definition of sustainability in and for software

engineering. Proceedings of the 28th Annual ACM Symposium on Applied

Computing. https://doi.org/10.1145/2480362.2480585

Seyff, N., Penzenstadler, B., Betz, S., Brooks, I., Oyedeji, S., Porras, J., … & Venters, C.

C. (2021). The elephant in the room - educating practitioners on software

development for sustainability. 2021 IEEE/ACM International Workshop on Body

of Knowledge for Software Sustainability (BoKSS).

https://doi.org/10.1109/bokss52540.2021.00017

Naumann, S., Kern, E., Dick, M., & Johann, T. (2014). Sustainable software engineering:

process and quality models, life cycle, and social aspects. Advances in Intelligent

Systems and Computing, 191-205. https://doi.org/10.1007/978-3-319-09228-7_11

Sriraman, G. and Raghunathan, S. (2023). A systems thinking approach to improve

sustainability in software engineering—a grounded capability maturity framework.

Sustainability, 15(11), 8766. https://doi.org/10.3390/su15118766

Rashid, N. and Khan, S. U. (2018). Agile practices for global software development

vendors in the development of green and sustainable software. Journal of Software:

Evolution and Process, 30(10). https://doi.org/10.1002/smr.1964

Nazir, S., Fatima, N., Chuprat, S., Sarkan, H. M., Nurulhuda, F., & Sjarif, N. N. A. (2020).

Sustainable software engineering:a perspective of individual sustainability.

International Journal on Advanced Science, Engineering and Information

Technology, 10(2), 676-683. https://doi.org/10.18517/ijaseit.10.2.10190

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N., … &

Venters, C. C. (2015). Sustainability design and software: the Karlskrona

manifesto. 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering. https://doi.org/10.1109/icse.2015.179

